Transfer Learning for Policy Search Methods
نویسندگان
چکیده
An ambitious goal of transfer learning is to learn a task faster after training on a different, but related, task. In this paper we extend a previously successful temporal difference (Sutton & Barto, 1998) approach to transfer in reinforcement learning (Sutton & Barto, 1998) tasks to work with policy search. In particular, we show how to construct a mapping to translate a population of policies trained via genetic algorithms (GAs) (Goldberg, 1989) from a source task to a target task. Empirical results in robot soccer Keepaway, a standard RL benchmark domain (Stone et al., 2006), demonstrate that transfer via inter-task mapping can markedly reduce the time required to learn a second, more complex, task.
منابع مشابه
Neuro-Evolution for Multi-Agent Policy Transfer in RoboCup Keep-Away: (Extended Abstract)
An objective of transfer learning is to improve and speedup learning on target tasks after training on a different, but related source tasks. This research is a study of comparative Neuro-Evolution (NE) methods for transferring evolved multi-agent policies (behaviors) between multi-agent tasks of varying complexity. The efficacy of five variants of two NE methods are compared for multi-agent po...
متن کاملNeuro-Evolution for Multi-Agent Policy Transfer in RoboCup Keep-Away
An objective of transfer learning is to improve and speedup learning on target tasks after training on a different, but related source tasks. This research is a study of comparative Neuro-Evolution (NE) methods for transferring evolved multi-agent policies (behaviors) between multi-agent tasks of varying complexity. The efficacy of five variants of two NE methods are compared for multi-agent po...
متن کاملTransfer Learning for Policy Search Methods
An ambitious goal of transfer learning is to learn a task faster after training on a different, but related, task. In this paper we extend a previously successful temporal difference (Sutton & Barto, 1998) approach to transfer in reinforcement learning (Sutton & Barto, 1998) tasks to work with policy search. In particular, we show how to construct a mapping to translate a population of policies...
متن کاملA Comparative Study of the Predictive Factors of Learning Transfer to Workplace in Public and Private Hospitals
Introduction: The effectiveness of organizational training courses depends on learning transfer to workplace; therefore, identifying the predictor’s transfer of learning has become one of the Necessities in human resource development. On the other hand, recent studies support the idea that the predictor’s transfer of learning are influenced by culture and context of each organization. In accord...
متن کاملA Survey on Policy Search for Robotics
Policy search is a subfield in reinforcement learning which focuses on finding good parameters for a given policy parametrization. It is well suited for robotics as it can cope with high-dimensional state and action spaces, one of the main challenges in robot learning. We review recent successes of both model-free and model-based policy search in robot learning. Model-free policy search is a ge...
متن کامل